Los números reales son los que pueden ser expresados por un número entero (3, 28, 1568) o decimal (4,28; 289,6; 39985,4671). Esto quiere decir que abarcan a los números racionales (que pueden representarse como el cociente de dos enteros con denominador distinto a cero) y los números irracionales (los que no pueden ser expresados como una fracción de números enteros con denominador diferente a cero).
Otra clasificación de los números reales puede realizarse entre números algebraicos (un tipo de número complejo) y números trascendentes (un tipo de número irracional).

En el segundo gran grupo anteriormente citado, el de los números irracionales, nos encontramos a su vez que existen en su seno dos clasificaciones: irracionales algebraicos e intrascendentes.
Dentro de la Ingeniería se hace especialmente uso de los citados números reales y en ella se parte de una serie de ideas claramente delimitadas como serían las siguientes: los números reales son la suma de los racionales y los irracionales, el conjunto de los reales puede definirse como un conjunto ordenado y este se puede representar mediante una recta en la que cada punto de la misma representa a un número concreto.
Es importante tener en cuenta que los números reales permiten completar cualquier tipo de operación básica con dos excepciones: las raíces de orden par de los números negativos no son números reales (aquí aparece la noción de número complejo) y no existe la división entre cero (no es posible dividir algo entre nada).
No hay comentarios:
Publicar un comentario